Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
CNS Neurosci Ther ; 30(2): e14592, 2024 02.
Article in English | MEDLINE | ID: mdl-38385622

ABSTRACT

AIMS: Disturbances in the circadian rhythm are positively correlated with the processes of aging and related neurodegenerative diseases, which are also associated with brain iron accumulation. However, the role of brain iron in regulating the biological rhythm is poorly understood. In this study, we investigated the impact of brain iron levels on the spontaneous locomotor activity of mice with altered brain iron levels and further explored the potential mechanisms governing these effects in vitro. RESULTS: Our results revealed that conditional knockout of ferroportin 1 (Fpn1) in cerebral microvascular endothelial cells led to brain iron deficiency, subsequently resulting in enhanced locomotor activity and increased expression of clock genes, including the circadian locomotor output cycles kaput protein (Clock) and brain and muscle ARNT-like 1 (Bmal1). Concomitantly, the levels of period circadian regulator 1 (PER1), which functions as a transcriptional repressor in regulating biological rhythm, were decreased. Conversely, the elevated brain iron levels in APP/PS1 mice inhibited autonomous rhythmic activity. Additionally, our findings demonstrate a significant decrease in serum melatonin levels in Fpn1cdh5 -CKO mice compared with the Fpn1flox/flox group. In contrast, APP/PS1 mice with brain iron deposition exhibited higher serum melatonin levels than the WT group. Furthermore, in the human glioma cell line, U251, we observed reduced PER1 expression upon iron limitation by deferoxamine (DFO; iron chelator) or endogenous overexpression of FPN1. When U251 cells were made iron-replete by supplementation with ferric ammonium citrate (FAC) or increased iron import through transferrin receptor 1 (TfR1) overexpression, PER1 protein levels were increased. Additionally, we obtained similar results to U251 cells in mouse cerebellar astrocytes (MA-c), where we collected cells at different time points to investigate the rhythmic expression of core clock genes and the impact of DFO or FAC treatment on PER1 protein levels. CONCLUSION: These findings collectively suggest that altered iron levels influence the circadian rhythm by regulating PER1 expression and thereby modulating the molecular circadian clock. In conclusion, our study identifies the regulation of brain iron levels as a potential new target for treating age-related disruptions in the circadian rhythm.


Subject(s)
Iron , Melatonin , Mice , Humans , Animals , Iron/metabolism , Endothelial Cells/metabolism , Brain/metabolism , Circadian Rhythm/genetics , Period Circadian Proteins/genetics
2.
J Neuroinflammation ; 21(1): 15, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195497

ABSTRACT

BACKGROUND: Hepcidin is the master regulator of iron homeostasis. Hepcidin downregulation has been demonstrated in the brains of Alzheimer's disease (AD) patients. However, the mechanism underlying the role of hepcidin downregulation in cognitive impairment has not been elucidated. METHODS: In the present study, we generated GFAP-Cre-mediated hepcidin conditional knockout mice (HampGFAP cKO) to explore the effect of hepcidin deficiency on hippocampal structure and neurocognition. RESULTS: We found that the HampGFAP cKO mice developed AD-like brain atrophy and memory deficits. In particular, the weight of the hippocampus and the number of granule neurons in the dentate gyrus were significantly reduced. Further investigation demonstrated that the morphological change in the hippocampus of HampGFAP cKO mice was attributed to impaired neurogenesis caused by decreased proliferation of neural stem cells. Regarding the molecular mechanism, increased iron content after depletion of hepcidin followed by an elevated level of the inflammatory factor tumor necrosis factor-α accounted for the impairment of hippocampal neurogenesis in HampGFAP cKO mice. These observations were further verified in GFAP promoter-driven hepcidin knockdown mice and in Nestin-Cre-mediated hepcidin conditional knockout mice. CONCLUSIONS: The present findings demonstrated a critical role for hepcidin in hippocampal neurogenesis and validated the importance of iron and associated inflammatory cytokines as key modulators of neurodevelopment, providing insights into the potential pathogenesis of cognitive dysfunction and related treatments.


Subject(s)
Alzheimer Disease , Central Nervous System Diseases , Animals , Humans , Mice , Atrophy , Brain , Hepcidins/genetics , Hippocampus , Iron , Memory Disorders/genetics , Mice, Knockout
3.
Cell Death Dis ; 15(1): 49, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218852

ABSTRACT

Transmembrane serine protease 6 (Tmprss6) has been correlated with the occurrence and progression of tumors, but any specific molecular mechanism linking the enzyme to oncogenesis has remained elusive thus far. In the present study, we found that Tmprss6 markedly inhibited mouse neuroblastoma N2a (neuro-2a) cell proliferation and tumor growth in nude mice. Tmprss6 inhibits Smad1/5/8 phosphorylation by cleaving the bone morphogenetic protein (BMP) co-receptor, hemojuvelin (HJV). Ordinarily, phosphorylated Smad1/5/8 binds to Smad4 for nuclear translocation, which stimulates the expression of hepcidin, ultimately decreasing the export of iron through ferroportin 1 (FPN1). The decrease in cellular iron levels in neuro-2a cells with elevated Tmprss6 expression limited the availability of the metal forribo nucleotide reductase activity, thereby arresting the cell cycle prior to S phase. Interestingly, Smad4 promoted nuclear translocation of activating transcription factor 3 (ATF3) to activate the p38 mitogen-activated protein kinases signaling pathway by binding to ATF3, inducing apoptosis of neuro-2a cells and inhibiting tumor growth. Disruption of ATF3 expression significantly decreased apoptosis in Tmprss6 overexpressed neuro-2a cells. Our study describes a mechanism whereby Tmprss6 regulates the cell cycle and apoptosis. Thus, we propose Tmprss6 as a candidate target for inhibiting neuronal tumor growth.


Subject(s)
Hepcidins , Neoplasms , Animals , Mice , Bone Morphogenetic Proteins/metabolism , Iron/metabolism , Mice, Nude
4.
CNS Neurosci Ther ; 30(2): e14394, 2024 02.
Article in English | MEDLINE | ID: mdl-37545321

ABSTRACT

AIMS: Adult hippocampal neurogenesis is an important player in brain homeostasis and its impairment participates in neurological diseases. Iron overload has emerged as an irreversible factor of brain aging, and is also closely related to degenerative disorders, including cognitive dysfunction. However, whether brain iron overload alters hippocampal neurogenesis has not been reported. We investigated the effect of elevated iron content on adult hippocampal neurogenesis and explored the underlying mechanism. METHODS: Mouse models with hippocampal iron overload were generated. Neurogenesis in hippocampus and expression levels of related molecules were assessed. RESULTS: Iron accumulation in hippocampus remarkably impaired the differentiation of neural stem cells, resulting in a significant decrease in newborn neurons. The damage was possibly attributed to iron-induced downregulation of proprotein convertase furin and subsequently decreased maturation of brain-derived neurotrophic factor (BDNF), thus contributing to memory decline and anxiety-like behavior of mice. Supportively, knockdown of furin indeed suppressed hippocampal neurogenesis, while furin overexpression restored the impairment. CONCLUSION: These findings demonstrated that iron overload damaged hippocampal neurogenesis likely via iron-furin-BDNF pathway. This study provides new insights into potential mechanisms on iron-induced neurotoxicity and the causes of neurogenesis injury and renders modulating iron homeostasis and furin expression as novel therapeutic strategies for treatment of neurological diseases.


Subject(s)
Brain-Derived Neurotrophic Factor , Iron Overload , Mice , Animals , Brain-Derived Neurotrophic Factor/metabolism , Furin/metabolism , Furin/pharmacology , Hippocampus/metabolism , Neurogenesis/physiology , Iron/metabolism
5.
Antioxidants (Basel) ; 12(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38001850

ABSTRACT

Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.

6.
Antioxidants (Basel) ; 12(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37760024

ABSTRACT

Iron is essential for life, and the dysregulation of iron homeostasis can lead to severe pathological changes in the neurological system [...].

7.
Sci Rep ; 13(1): 15365, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37717088

ABSTRACT

Ferroptosis is an iron-dependent, lipid peroxidation-driven cell death pathway, while Parkinson's disease (PD) patients exhibit iron deposition and lipid peroxidation in the brain. Thus, the features of ferroptosis highly overlap with the pathophysiological features of PD. Despite this superficial connection, the possible role(s) of ferroptosis-related (Fr) proteins in dopaminergic neurons and/or glial cells in the substantia nigra (SN) in PD have not been examined in depth. To explore the correlations between the different SN cell types and ferroptosis at the single-cell level in PD patients, and to explore genes that may affect the sensitivity of dopaminergic neurons to ferroptosis, we performed in silico analysis of a single cell RNA sequence (RNA-seq) set (GSE178265) from the Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in the different cell types in the human SN, and proceeded to perform enrichment analysis, constructing a protein-protein interaction network from the DEGs of dopaminergic neurons with the Metascape database. We examined the intersection of Fr genes present in the FerrDb database with DEGs from the GSE178265 set to identify Fr-DEGs in the different brain cells. Further, we identified Fr-DEGs encoding secreted proteins to implicate cell-cell interactions in the potential stimulation of ferroptosis in PD. The Fr-DEGs we identified were verified using the bulk RNA-seq sets (GSE49036 and GSE20164). The number of dopaminergic neurons decreased in the SN of PD patients. Interestingly, non-dopaminergic neurons possessed the fewest DEGs. Enrichment analysis of dopaminergic neurons' DEGs revealed changes in transmission across chemical synapses and ATP metabolic process in PD. The secreted Fr-DEGs identified were ceruloplasmin (CP), high mobility group box 1 (HMGB1) and transferrin (TF). The bulk RNA-seq set from the GEO database demonstrates that CP expression is increased in the PD brain. In conclusion, our results identify CP as a potential therapeutic target to protect dopaminergic neurons by reducing neurons' sensitivity to ferroptosis.


Subject(s)
Ferroptosis , Parkinson Disease , Humans , Ferroptosis/genetics , Parkinson Disease/genetics , Substantia Nigra , Ceruloplasmin , Dopaminergic Neurons , Hypesthesia , Iron
8.
Antioxidants (Basel) ; 12(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37372019

ABSTRACT

The incidence of neurological diseases, such as Parkinson's disease, Alzheimer's disease and stroke, is increasing. An increasing number of studies have correlated these diseases with brain iron overload and the resulting oxidative damage. Brain iron deficiency has also been closely linked to neurodevelopment. These neurological disorders seriously affect the physical and mental health of patients and bring heavy economic burdens to families and society. Therefore, it is important to maintain brain iron homeostasis and to understand the mechanism of brain iron disorders affecting reactive oxygen species (ROS) balance, resulting in neural damage, cell death and, ultimately, leading to the development of disease. Evidence has shown that many therapies targeting brain iron and ROS imbalances have good preventive and therapeutic effects on neurological diseases. This review highlights the molecular mechanisms, pathogenesis and treatment strategies of brain iron metabolism disorders in neurological diseases.

9.
Sci China Life Sci ; 66(8): 1841-1857, 2023 08.
Article in English | MEDLINE | ID: mdl-36929272

ABSTRACT

Iron is important for life, and iron deficiency impairs development, but whether the iron level regulates neural differentiation remains elusive. In this study, with iron-regulatory proteins (IRPs) knockout embryonic stem cells (ESCs) that showed severe iron deficiency, we found that the Pax6- and Sox2-positive neuronal precursor cells and Tuj1 fibers in IRP1-/-IRP2-/- ESCs were significantly decreased after inducing neural differentiation. Consistently, in vivo study showed that the knockdown of IRP1 in IRP2-/- fetal mice remarkably affected the differentiation of neuronal precursors and the migration of neurons. These findings suggest that low intracellular iron status significantly inhibits neurodifferentiation. When supplementing IRP1-/-IRP2-/- ESCs with iron, these ESCs could differentiate normally. Further investigations revealed that the underlying mechanism was associated with an increase in reactive oxygen species (ROS) production caused by the substantially low level of iron and the down-regulation of iron-sulfur cluster protein ISCU, which, in turn, affected the proliferation and differentiation of stem cells. Thus, the appropriate amount of iron is crucial for maintaining normal neural differentiation that is termed ferrodifferentiation.


Subject(s)
Iron Deficiencies , Iron-Sulfur Proteins , Reactive Oxygen Species , Animals , Mice , Iron/metabolism , Iron Regulatory Protein 1/metabolism , Iron Regulatory Protein 2/metabolism , Iron-Sulfur Proteins/metabolism , Reactive Oxygen Species/metabolism
10.
Cell Death Dis ; 14(2): 161, 2023 02 25.
Article in English | MEDLINE | ID: mdl-36841833

ABSTRACT

Ischemic stroke is associated with high mortality and morbidity rates worldwide. However, the molecular mechanisms underlying the neuronal damage incurred by stroke victims remain unclear. It has previously been reported that ischemic stroke can induce an increase in the levels of brain iron, which is an important factor of in the associated brain damage. Ferroportin 1 (FPN1), the only known cellular iron export protein, is found in brain microvascular endothelial cells (BMVECs) at the blood-brain barrier, and is considered the gateway for entry of plasma iron into the central nervous system. Despite the connection of brain iron to neuronal damage, the role of BMVECs FPN1 in ischemic stroke remains unexplored. Herein, we conditionally deleted Fpn1 in mouse endothelial cells (ECs), using VE-cadherin-Cre transgenic mice, and explored the impact on brain iron homeostasis after stroke. Our data demonstrated that Fpn1 knockout in ECs decreased the brain iron levels in mice, attenuated the oxidative stress and inflammatory responses after stroke, and inhibited both ferroptosis and apoptosis, ultimately alleviating neurological impairment and decreasing cerebral infarct volume during the acute phase of ischemic stroke. By contrast, we found that Fpn1 knockout in ECs delayed the recovery of neurological function in mice following ischemic stroke. We also found that ECs Fpn1 knockout decreased the brain iron levels after stroke, exacerbated glial cell proliferation, and inhibited neuronal development, indicating that the diminished brain iron levels hindered the repair of neural injury in mice. In conclusion, our findings reveal a dual consequence of FPN1 deficiency in ECs in the development of ischemic stroke. More specifically, iron deficiency initially exerts a neuroprotective effect during the acute phase of ischemic stroke but inhibits recovery during the later stages. Our findings are important to the development of iron- or FPN1-targeting therapeutics for the treatment of ischemic stroke.


Subject(s)
Cation Transport Proteins , Ischemic Stroke , Neuroprotective Agents , Animals , Mice , Endothelial Cells/metabolism , Iron/metabolism , Ischemic Stroke/metabolism , Mice, Transgenic , Neuroprotective Agents/metabolism , Cadherins/metabolism , Cation Transport Proteins/genetics
11.
Antioxidants (Basel) ; 12(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36829936

ABSTRACT

CHIR99021 is an aminopyrimidine derivative, which can efficiently inhibit the activity of glycogen synthesis kinase 3α (GSK-3α) and GSK-3ß. As an essential component of stem cell culture medium, it plays an important role in maintaining cell stemness. However, the mechanism of its role is not fully understood. In the present study, we first found that removal of CHIR99021 from embryonic stem cell culture medium reduced iron storage in mouse embryonic stem cells (mESCs). CHIR99021-treated Neuro-2a cells led to an upregulation of ferritin expression and an increase in intracellular iron levels, along with GSK3ß inhibition and Wnt/GSK-3ß/ß-catenin pathway activation. In addition, iron treatment activated the classical Wnt pathway by affecting the expression of ß-catenin in the Neuro-2a cells. Our data link the role of iron in the maintenance of cell stemness via the Wnt/GSK-3ß/ß-catenin signaling pathway, and identify intermediate molecules, including Steap1, Bola2, and Kdm6bos, which may mediate the upregulation of ferritin expression by CHIR99021. These findings reveal novel mechanisms of the maintenance of cell stemness and differentiation and provide a theoretical basis for the development of new strategies in stem cell treatment in disease.

12.
Cell Death Dis ; 13(11): 1006, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443285

ABSTRACT

Ceruloplasmin (CP) plays an important role in maintaining iron homeostasis. Cp gene knockout (Cp-/-) mice develop a neurodegenerative disease with aging and show iron accumulation in the brain. However, iron deficiency has also been observed in 3 M Cp-/- mice. The use of systemic Cp gene knockout is insufficient to reveal specific functions for CP in the central nervous system. Considering recent discoveries that astrocytes synthetize the majority of brain CP, we generated astrocyte conditional Cp knockout (CpGfapcKO) mice, and found that iron contents decreased in the cerebral cortex and hippocampus of young (6 M) and old (18 M) CpGfapcKO mice. Further experiments revealed that 6 M CpGfapcKO mice exhibited impaired learning and memory function, while 18 M CpGfapcKO mice exhibited improved learning and memory function. Our study demonstrates that astrocytic Cp deletion blocks brain iron influx through the blood-brain-barrier, with concomitantly increased iron levels in brain microvascular endothelial cells, resulting in brain iron deficiency and down-regulation of ferritin levels in neurons, astrocytes, microglia and oligodendrocytes. At the young age, the synapse density, synapse-related protein levels, 5-hydroxytryptamine and norepinephrine, hippocampal neurogenesis and myelin formation were all decreased in CpGfapcKO mice. These changes affected learning and memory impairment in young CpGfapcKO mice. In old CpGfapcKO mice, iron accumulation with aging was attenuated, and was accompanied by the alleviation of the ROS-MAPK-apoptosis pathway, Tau phosphorylation and ß-amyloid aggregation, thus delaying age-related memory decline. Overall, our results demonstrate that astrocytic Cp deletion has divergent effects on learning and memory function via different regulatory mechanisms induced by decreased iron contents in the brain of mice, which may present strategies for the prevention and treatment of dementia.


Subject(s)
Ceruloplasmin , Neurodegenerative Diseases , Animals , Mice , Ceruloplasmin/genetics , Astrocytes , Endothelial Cells , Iron
13.
Front Oncol ; 12: 963096, 2022.
Article in English | MEDLINE | ID: mdl-36237302

ABSTRACT

Background: Glioma is the most common primary malignant brain tumor with high mortality and poor prognosis. Hepcidin is a fascinating iron metabolism regulator. However, the prognostic value of hepcidin HAMP in gliomas and its correlation with immune cell infiltration remain unclear. Here, we comprehensively elucidate the prognostic value and potential role of hepcidin in gliomas. Methods: Hepcidin gene expression and clinical characteristics in glioma were analyzed using the CGGA, TCGA, Rembrandt and Gravendeel glioma databases. A survival analysis was conducted using Kaplan-Meier and Cox regression analyses. A gene set enrichment analysis (GSEA) was conducted to select the pathways significantly enriched for hepcidin associations. The correlations between hepcidin and immune cell infiltration and immunotherapy were analyzed using network platforms such as CIBERSORT and TIMER. Results: In glioma tissues, the expression of hepcidin was significantly increased. High hepcidin expression is related to grade, age, PRS type, IDH mutation, chemotherapy status and 1p19q codeletion status, which significantly indicates the poor prognosis of glioma patients. Hepcidin can be used as an independent prognostic factor for glioma through the multivariate COX regression analysis. The results of Gene Ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG) and gene set enrichment analysis (GSEA) indicated that hepcidin was involved in the immune response. In addition, hepcidin expression was positively correlated with the degree of immune cell infiltration, the expression of various immune cell markers and the efficacy of immunotherapy. Conclusion: Our results indicate that hepcidin can be used as a candidate biomarker to judge the prognosis and immune cell invasion of gliomas.

15.
Redox Biol ; 57: 102475, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36179435

ABSTRACT

Oxidative stress and deficient bioenergetics are key players in the pathological process of cerebral ischemia reperfusion injury (I/R). As a mitochondrial iron storage protein, mitochondrial ferritin (FtMt) plays a pivotal role in protecting neuronal cells from oxidative damage under stress conditions. However, the effects of FtMt in mitochondrial function and activation of apoptosis under cerebral I/R are barely understood. In the present study, we found that FtMt deficiency exacerbates neuronal apoptosis via classical mitochondria-depedent pathway and the endoplasmic reticulum (ER) stress pathway in brains exposed to I/R. Conversely, FtMt overexpression significantly inhibited oxygen and glucose deprivation and reperfusion (OGD/R)-induced apoptosis and the activation of ER stress response. Meanwhile, FtMt overexpression rescued OGD/R-induced mitochondrial iron overload, mitochondrial dysfunction, the generation of reactive oxygen species (ROS) and increased neuronal GSH content. Using the Seahorse and O2K cellular respiration analyser, we demonstrated that FtMt remarkably improved the ATP content and the spare respiratory capacity under I/R conditions. Importantly, we found that glucose consumption was augmented in FtMt overexpressing cells after OGD/R insult; overexpression of FtMt facilitated the activation of glucose 6-phosphate dehydrogenase and the production of NADPH in cells after OGD/R, indicating that the pentose-phosphate pathway is enhanced in FtMt overexpressing cells, thus strengthening the antioxidant capacity of neuronal cells. In summary, our results reveal that FtMt protects against I/R-induced apoptosis through enhancing mitochondrial bioenergetics and regulating glucose metabolism via the pentose-phosphate pathway, thus preventing ROS overproduction, and preserving energy metabolism.

16.
Toxicol Lett ; 369: 34-42, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36057382

ABSTRACT

The functional activities of gold nanoparticles (AuNPs) on biological systems depend on their physical-chemical properties and their surface functionalizations. Within a biological environment and depending on their surface characteristics, NPs can adsorb biomolecules (mostly proteins) present in the microenvironment, thereby forming a dynamic biomolecular corona on the surface. The presence of this biocorona changes the physical-chemical and functional properties of the NPs and how it interacts with cells. Here, we show that primary human epidermal keratinocytes (HEK) exposed in culture to branched polyethyleneimine (BPEI)-AuNPs, but not to lipoic acid (LA)-AuNPs, show potent particle uptake, decreased cell viability and enhanced production of inflammatory factors, while the presence of a human plasma-derived biocorona decreased NPs uptake and rescued cells from BPEI-AuNP-induced cell death. The mechanistic study revealed that the intracellular oxidative level greatly increased after the BPEI-AuNPs treatment, and the transcriptomic analysis showed that the dominant modulated pathways were related to oxidative stress and an antioxidant response. The stress level measured by flow cytometry also showed a significant decrease in the presence of a biocorona. Further anaylsis discovered that nuclear factor erythroid-2 related factor (Nrf2), a major regulator of anti-oxidant and anti-inflammatory genes, as the key factor related to the AuNPs induced oxidative stress and inflammation. This study provides futher understanding into the mechanisms on how NPs-induced cellular stress and reveals the protective effects of a biocorona on inflammatory responses in HEK at the molecular level, which provides important insights into the biological responses of AuNPs and their biocorona.


Subject(s)
Metal Nanoparticles , Protein Corona , Thioctic Acid , Antioxidants , Gold/chemistry , Gold/toxicity , Humans , Keratinocytes/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , NF-E2-Related Factor 2/genetics , Polyethyleneimine/chemistry , Protein Corona/chemistry , Protein Corona/metabolism , Thioctic Acid/pharmacology
17.
Nat Nanotechnol ; 17(9): 993-1003, 2022 09.
Article in English | MEDLINE | ID: mdl-35995853

ABSTRACT

The global emergency caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic can only be solved with effective and widespread preventive and therapeutic strategies, and both are still insufficient. Here, we describe an ultrathin two-dimensional CuInP2S6 (CIPS) nanosheet as a new agent against SARS-CoV-2 infection. CIPS exhibits an extremely high and selective binding capacity (dissociation constant (KD) < 1 pM) for the receptor binding domain of the spike protein of wild-type SARS-CoV-2 and its variants of concern, including Delta and Omicron, inhibiting virus entry and infection in angiotensin converting enzyme 2 (ACE2)-bearing cells, human airway epithelial organoids and human ACE2-transgenic mice. On association with CIPS, the virus is quickly phagocytosed and eliminated by macrophages, suggesting that CIPS could be successfully used to capture and facilitate virus elimination by the host. Thus, we propose CIPS as a promising nanodrug for future safe and effective anti-SARS-CoV-2 therapy, and as a decontamination agent and surface-coating material to reduce SARS-CoV-2 infectivity.


Subject(s)
COVID-19 Drug Treatment , Nanostructures , Angiotensin-Converting Enzyme 2 , Animals , Humans , Mice , Nanostructures/therapeutic use , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
18.
Cell Death Dis ; 13(8): 667, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915080

ABSTRACT

Brain iron dysregulation associated with aging is closely related to motor and cognitive impairments in neurodegenerative diseases. The regulation of iron traffic at the blood-brain barrier (BBB) is crucial to maintain brain iron homeostasis. However, the specific mechanism has not been clarified in detail. Using various conditional gene knockout and overexpression mice, as well as cell co-culture of astrocyte and bEND.3 in the transwell, we found that astrocyte hepcidin knockdown increased the expression of ferroportin 1 (FPN1) of brain microvascular endothelial cells (BMVECs), and that it also induced brain iron overload and cognitive decline in mice. Moreover, BMVECs FPN1 knockout decreased iron contents in the cortex and hippocampus. Furthermore, hepcidin regulates the level of FPN1 of BMVECs with conditional gene overexpression in vivo and in vitro. Our results revealed that astrocytes responded to the intracellular high iron level and increased the secretion of hepcidin, which in turn diminished iron uptake at BBB from circulation through directly regulating FPN1 of BMVECs. Our results demonstrate that FPN1 of BMVECs is a gateway for iron transport into the brain from circulation, and the controller of this gateway is hepcidin secreted by astrocyte at its endfeet through physical contact with BMVECs. This regulation is indeed the major checkpoint for iron transport from the blood circulation to the brain. This study delineates the pathway and regulation of iron entry into the brain, providing potential therapeutic targets for iron dysregulation-related neurological diseases.


Subject(s)
Hepcidins , Iron , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Cation Transport Proteins , Endothelial Cells/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Iron/metabolism , Mice
19.
Transl Neurodegener ; 11(1): 39, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35996194

ABSTRACT

Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.


Subject(s)
Furin , Neurodegenerative Diseases , Animals , Furin/genetics , Furin/physiology , Humans , Proprotein Convertases/genetics
20.
Antioxidants (Basel) ; 11(7)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35883748

ABSTRACT

Blood-brain barrier (BBB) breakdown, a characteristic feature of ischemic stroke, contributes to poor patient outcomes. Brain microvascular endothelial cells (BMVECs) are a key component of the BBB and dysfunction or death of these cells following cerebral ischemia reperfusion (I/R) injury can disrupt the BBB, leading to leukocyte infiltration, brain edema and intracerebral hemorrhage. We previously demonstrated that mitochondrial ferritin (FtMt) can alleviate I/R-induced neuronal ferroptosis by inhibiting inflammation-regulated iron deposition. However, whether FtMt is involved in BBB disruption during cerebral I/R is still unknown. In the present study, we found that FtMt expression in BMVECs is upregulated after I/R and overexpression of FtMt attenuates I/R-induced BBB disruption. Mechanistically, we found that FtMt prevents tight junction loss and apoptosis by inhibiting iron dysregulation and reactive oxygen species (ROS) accumulation in I/R-treated BMVECs. Chelating excess iron with deferoxamine alleviates apoptosis in the brain endothelial cell line bEnd.3 under oxygen glucose deprivation followed by reoxygenation (OGD/R) insult. In summary, our data identify a previously unexplored effect for FtMt in the BBB and provide evidence that iron-mediated oxidative stress in BMVECs is an early cause of BMVECs damage and BBB breakdown in ischemic stroke.

SELECTION OF CITATIONS
SEARCH DETAIL
...